

2024 EDITING

Vitaminate the career of your Engineers, Managers and Technicians

COME AND TALK US ABOUT YOUR PASSIONS

OLGHAM is a Simplified Joint Stock Company created on October 1st, 2018 by two shareholders from the world of on-board aeronautical certification, but also benefiting from very significant experiences in air traffic, on-board space, ground, industry and the automotive domain.

Our values

- Integrity « I say what I do and I do what I say »
- Transparency « Key element of mutual and reciprocal trust »

Our Domains

Our Competences

DOA Certification — Critical areas Software Technical Debt Resolution System and Software Quality Assurance Cindynical software Optimization Artificial Intelligence

Safety and Security mutualization

Continuing training

RAMS analysis

Status audits

Declaration of activity registered under no: 76 31 09735 31 This registration shall not be considered as an approval of the State

Off-site Training

Off-site trainings are short duration (1 to 5 days), focuses on business skills or associated methods and techniques. They take place at the OLGHAM premises in Toulouse (France) on the dates set in our schedule. We can nevertheless create additional sessions as soon as a sufficient number of participants is reached. We welcome you from 9:30 am to 5:30 pm for 7 hours of training per day. The registration fee covers educational costs as well as lunches and breaks. The trainings are carried out for a minimum of 4 trainees.

These training courses are offered on fixed dates. Nonetheless, we collect your needs all year round. Once a sufficient number of participants is reached, an additional off-site session may be scheduled.

On-site Training

On-site training is our effective solution for tailor-made projects. It allows more flexibility since it is set up regardless of the dates appearing in our schedule. For this, we operate throughout France and internationally.

Several formats are available:

- Reproduction of a module presented in the catalog,
- Creation of career paths by combining several modules,
- Creation of a tailor-made training course whose theme does not appear in our current catalog

56 Route de Galembrun, Lieu-dit Thuin, 31480 PELLEPORT France | +33 (0)6 49 31 30 23 | RCS Toulouse SIRET : 842 860 348 00015 | TVA: FR91 842860348 | APE: 6202A

Our Engagements

Welcome

Ms. Sandrine CHOUZIOU is your single point of contact for all administrative (financing, contractual documents) and logistics (means of access, timetables, etc.) questions. At the start of the course, the objectives and the training program are reminded to the participants. A course material is provided to you in digital format.

For training conducted by videoconference, a preliminary test of the tool will be carried out with each participant to ensure the correct installation and operation of the tool before the training. Individual appointments will be made.

Mrs Sandrine CHOUZIOU
Training Manager
Phone: 06.49.31.30.23

Email: sandrine.chouziou@olgham.com

Accessibility

Any person with a disability wishing to register for our training courses is kindly requested to contact the Training Manager (Sandrine CHOUZIOU) by email sandrine.chouziou@olgham.com in order to study the methods of adapting our training within the framework of a personal interview.

Educational Engineering

The educational engineering of these training courses is carried out by our trainers, in consultation with your teams since we send you prerequisite questionnaires and organize for on-site training, a phone qualification of your need.

Benefit from a 12-month support in the form of videoconference at the end of any training.

Educational Quality

Our training courses are all led by recognized professionals who work in their area of expertise. Depending on the themes, case studies and / or practical work will enable the concepts taught to be applied. A MCQ is systematically proposed at the end of the session, which correction of is made with the trainer during the session. This allows us to be able to come back to any misunderstandings. This way we make sure that the learning objectives are met.

Satisfaction

At the end of the training, a round table is organized and a hot evaluation is distributed in order to collect the opinions and comments of the participants. We analyse and consolidate these assessments as part of our continuous improvement process.

Based on our evaluation surveys collected at the end of training over the last 2 years:

100 % of our trainees are satisfied to very satisfied with our management training,

100 % of our trainees are satisfied to very satisfied with our training in security development processes,

100 % of our trainees are satisfied to very satisfied with our GNSS training,

We got 99 % feedback from hot satisfaction surveys concerning the 86 participants trained since 2018.

We provided 172 hours of training.

Video-Conference

OLGHAM has chosen to work with the **TIXEO** tool; a French provider of secure videoconferencing solutions guaranteeing strict confidentiality organizations of their communications.

This system also used by the French government is certified for its reliability as regards of its cybersecurity.

The advantages of the solution:

End-to-end encryption (video, audio, data) in a multi-point situation

Sharing of applications and screens

High-definition image: ultra-HD / 4K

Smart multi-screen display

Work in conference or collaborative mode

Possibility to create working groups

Interoperability (computer, tablet, smartphone).

SUMMARY


01 MANAGEMENT	.01
02 SAFETY DEVELOPMENT PROCESS	.05
03 ARTIFICIAL INTELLIGENCE DEVELOPMENT PROCESS	.57
<u>04</u> gnss	.60

Planning

	Page	REF	Dur.	Jan.	Feb.	March	Apr.	May	June	July	Sept.	Oct.	Nov.	Dec.
ORGANIZATION MANAGEMENT	18		2,000					11101		, , , , , , , , , , , , , , , , , , ,	0.0			
PROJECT MANAGEMENT														
Advanced Project Management	4	OLID-FF24-0001	2 days			14-15							27-28	
QUALITY ASSURANCE				•					•		•			
ECSS-Q-ST-10C and ECSS-Q-ST-20C: Product Assurance	5	OLID-FF24-0002	2 days				4-5					24-25		
Management														
TL 9000: Quality Excellence in the telecommunication industry	6	OLID-FF24-0003	1 day				3					31		
SAFETY DEVELOPEMENT PROCESS														
PROJECTS														
IEC 61508: Functional safety of control systems	10	OLID-FF24-0004	1 day				19						7	
ECSS-M-ST-80C: 2008: Risk Management	11	OLID-FF24-0005	1 day						7					13
AGILE methods (SCRUM)	12	OLID-FF24-0006	1 day				3			18				
SYSTEM / CERTIFICATION			,											
Safety analysis: ARP4754A ED-79 and ARP4761 ED-135	13	OLID-FF24-0007	2 days		15-16						5-6			
ARP4754A ED-79 / ARP4761 ED-135 / DO-178C ED-12C / DO-254	14	OLID-FF24-0008	4 days				09-12					15-18		
ED-80														
Safety (RAMS) : AHA, PASA, FHA, PSSA (FMEA, FTA, DD, MA, CCA	15	OLID-FF24-0009	3 days			27-29					11-13			
(PRA, CMA, ZSA), FMES, SSA, ASA)														
IEC 61508: Functional safety of control systems - System part	16	OLID-FF24-0010	1 day			29					6			
ECSS-Q-ST-30 and 40: HA, FMEA, FMECA, FTA, HSIA	17	OLID-FF24-0011	1 day				5						8	
Systems plans development	18	OLID-FF24-0012	1 day				26						12	
System validation and verification optimization strategy	19	OLID-FF24-0013	2 days		21-22				6-7					
SOFTWARE / CERTIFICATION														
EU 373/2017 regulation	20	OLID-FF24-0014	1 day				25					28		
Clausier : DGA-16 Note	20	OLID-FF24-0015	1 day		16						6			
MIL-STD 498	22	OLID-FF24-0016	1 day				19					3		
IEC 61508: Functional safety of control systems - Software part	23	OLID-FF24-0017	2 days		22-23					4-5				
ISO/ IEC 29110: systems and software engineering for very small	24	OLID-FF24-0018	1 day		27					19				
organizations (SME)														
DO-178B / ED-12B	25	OLID-FF24-0019	5 days	15-19				27-31						
DO-178C / ED-12C	26	OLID-FF24-0020	4 days			12-15						22-25		
DO-178C / ED-12C	27	OLID-FF24-0021	5 days							22-26				2-6
DO-178C / ED-12C and RTCA DO-254 / ED-80: Overlap areas for	28	OLID-FF24-0022	3 days			20-22						7-9		
VHDL (FPGA) coding														
DO-200B / ED-76: Standards for processing aeronautical data	29	OLID-FF24-0023	1 day	26					7					
DO-248B / ED-94: Complement to ED-12B and ED-109	30	OLID-FF24-0024	1 day				26						8	
DO-248C / ED-94: Complement to ED-12C and ED-109A	31	OLID-FF24-0025	1 day			25						18		
DO-278 / ED-109: Software Integrity Assurance	32	OLID-FF24-0026	2 days					2-3	10.16				4-5	
DO-278A / ED-109A: Software Integrity Assurance	33	OLID-FF24-0027	2 days						13-14		46.55			4-5
DO-278A / ED-109A: Software Integrity Assurance	34	OLID-FF24-0028	5 days		5-9						16-20			
DO-297 / ED-124: Integrated Modular Avionics (IMA)	35	OLID-FF24-0029	1 day		1						13			

	Page	REF	Dur.	Jan.	Feb.	March	Apr.	May	June	July	Sept.	Oct.	Nov.	Dec.
ED-153 : Software Safety Assurance	36	OLID-FF24-0030	3 days			6-8							20-22	
DO-330 / ED-215: Software Tool Qualification	37	OLID-FF24-0031	2 days				4-5					10-11		
DO-331 / ED-218: Development and verification in aeronautics	38	OLID-FF24-0032	2 days	11-12					20-21					
based on formalized models														
DO-332 / ED-217: Object oriented Technology	39	OLID-FF24-0033	2 days			4-5					24-25			
DO-333 / ED-216: formal methods	40	OLID-FF24-0034	2 days		1-2					4-5				
ECSS-Q-ST-30: HSIA & FMEA SW: software robustness to hardware	41	OLID-FF24-0035	1 day			8				18				
failures and software design flaws														
ECSS Q-ST-80C: Software Product Assurance	42	OLID-FF24-0036	2 days	23-24					24-25					
ECSS-E-ST-40C: Space Software Engineering	43	OLID-FF24-0037	2 days	25-26					27-28					
SIA: Software Integrity Assurance for SME	44	OLID-FF24-0038	1 day					2					29	
Software Plans Development	45	OLID-FF24-0039	1 day			14				18				
Software development according to AGILE method	46	OLID-FF24-0040	1 day				26						22	
SEU and MBU robust software developments	47	OLID-FF24-0041	1 day					3						16
Optimization, validation and verification software strategy	48	OLID-FF24-0042	2 days		14-15						26-27			
SDRA: Static detection of Residual Anomalies	49	OLID-FF24-0043	2 days						13-14					12-13
RD3: Robustness and Defensive Driven Development	50	OLID-FF24-0044	1 day				26						22	
The 9 software structural covers	51	OLID-FF24-0045	1 day			11						4		
Data Coupling Analysis (CA) and Coupling Controls (CC)	52	OLID-FF24-0046	1 day					16					14	
Non-regression impact analysis process	53	OLID-FF24-0047	1 day	12						19				
Dynamic software integrity control	54	OLID-FF24-0048	1 day		2				3					
COTS integration in software development	55	OLID-FF24-0049	1 day			1					27			
Reuse of in-service experience	56	OLID-FF24-0050	1 day					17					15	
HARDWARE / CERTIFICATION														
IEC 61508: Functional safety of control systems - hardware part	57	OLID-FF24-0051	1 day					17					15	
DO-254 / ED-80: on-board electronic design assurance equipment	58	OLID-FF24-0052	2 days	10-11					3-4					
ARTIFICIAL INTELLIGENCE DEVELOPMENT PROCE	SS													
METHODOLOGY														
CERNA Report – Robotic Research Ethics	60	OLID-FF24-0053	1 day			1					13			
AI : CoDANN – Neuronal networks	61	OLID-FF24-0054	2 days				18-19					14-15		
GNSS														
Introduction to GNSS systems, GNSS receiver technology, and	63	OLID-FF24-0055	2 days							18-19			14-15	
SBAS augmentation systems														

MANAGEMENT

ADVANCED PROJECT MANAGEMENT	2
FOSS O ST 100 AND FOSS O ST 200	2
ECSS-Q-ST-10C AND ECSS-Q-ST-20C	చ
TL 9000	4

Advanced Project Management

While mastery of basic project management techniques is absolutely necessary, these techniques are rarely sufficient since they often do not take into account the main component of a project: the individuals who carry it out, and especially in the contexts of change.

Time: 2 days

Price on demand

OLID-FF24-0001

AUDIENCE

This training is intended for anyone involved in critical systems and / or software development projects applying the ARP-4754A, DO-178C or equivalent standards.

It is mainly aimed at project managers and batch managers. Knowledge of basic project management techniques is required. A first experience in project management or team management would be a plus.

PREREQUISITES-

No prerequisite

PEDAGOGICAL OBJECTIVES -

- Present fundamental techniques of project management
- Present difficulties and change management techniques
- Present specificities and give practical methods of human management within the framework of a project

PROGRAM -

Reminder of the fundamentals

Organization of activities (OBS, PBS, WBS, RAM, CBS, Project plans, etc.) Development approach (Life cycles, phases, milestones, ...) based on the ARP-4754A Estimates (costs, deadlines, etc.) **Planning** Monitoring (costs, deadlines, progress, etc.) Hypothesis management **Risk & opportunity** management **Training** Communication (internal, external) Subcontracting management Continuous improvement

Agile development

Change management

Changes Brakes, levers, losses Manage changes and impacts Action plan

Human management

Identify personalities and types of associated management Communicate Motivate an employee Support - coach Feedback Remote team management

EDUCATIONAL RESOURCES

Case study and applied exercises MONITORING AND EVALUATION

ECSS-Q-ST-10C and ECSS-Q-ST-20C

Product Assurance management

This training presents the quality assurance requirements for the establishment and implementation of quality assurance programs for projects covering design, development, production and operation of space systems, including their disposal.

Time: 2 days

Price on demand

OLID-FF24-0002

AUDIENCE-

This training is intended for anyone involved in critical systems and / or software development projects applying ECSS standards or equivalent.

It is mainly aimed at product assurance engineers, quality assurance engineers and project managers who want to have a better understanding of the content of the ECSS-Q-ST-10C and ECSS-Q-ST-20C standards.

A first experience in quality, quality assurance, process assurance or product assurance would be a plus.

PREREQUISITES-

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Develop the quality approach to be implemented at project management and product assurance level
- Understand the main ECSS quality standards applied in the space domain

PROGRAM -

ECSS-Q-ST-10C Introduction

Link between Q series

Programming of Product Assurance

Planning: organization,
responsibilities, resources,
interfaces
Implementation: management,
reporting, audits, risk
management, documentation,
registration
Configuration Management
Non-compliance management
Alert management

Documentation

Registers Forms

ECSS-Q-ST-20C Introduction

Principles of Quality Assurance

Requirements

Management requirements
General requirements: control,
traceability, metrology and
calibration, quality control
analysis
Design and verification
requirements
Procurement requirements
Production, assembly and
integration requirements
Test, acceptance & delivery
requirements
Ground support equipment
requirements

Documentation

Registers Forms

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

TL 9000

Quality Excellence in the telecommunication industry

TL 9000 is a quality measurement system for the telecommunications industry.

A TL 9000 certified supplier provides the "QUeST Forum" at regular intervals with Quality indicators which are stored anonymously and can be consulted by members. These members are customers and suppliers who can compare indicator communicated by its supplier to the other anonymous values of other suppliers; That is, evaluate its supplier on a global grid.

Time: 1 day

Price on demand

AUDIENCE-

This training is intended for anyone in charge of quality monitoring of developments specific to telecommunications industry.

It is mainly aimed at project managers, technical managers, method engineers and quality assurance managers.

PREREQUISITES—

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Present comparative philosophy of the "QUeST Forum"
- Present the two books (Book 1 and 2) and their respective roles
- Present the suitability with ISO 9000

PROGRAM -

Principles

Presentation of the "QUeST Forum" principle and the comparative approach Identification of the overlay area with ISO 9000

Book 1

Presentation of quality system requirements

Management

Responsibility

Quality System

Contract review

Design control

Document and data control

Purchasing

Control of customer

supplied product

Product identification and

traceability

Process control

Inspection and testing

Control of inspection, measuring and test

equipment

Inspection and test status

Control of product non-

conforming

Preventive and corrective

action

Handling, Storage,

Packaging, Preservation

and Delivery

Control of quality records

Internal quality audits

Training

Servicing

Statistical techniques

Quality improvement and customer satisfaction

Book 2

Metrics overview

General metrics requirements

Common metrics

Hardware metrics

Software metrics

Service metrics

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

SAFETY DEVELOPMENT PROCESS

IEC 61508	8
ECSS-M-ST-80C: 2008	9
AGILE METHOD (SCRUM)	10
SAFETY ANALYSES	11
ARP4754A ED-79, ARP4761 ED-135, DO-178C-ED-12C, DO-254 ED-80	12
SAFETY (RAMS)	13
IEC 61508: FUNCTIONAL SAFETY OF CONTROL SYSTEMS	
ECSS-Q-ST-30 AND 40	15
SYSTEM PLANS DEVELOPMENT	16
SYSTEM VALIDATION AND VERIFICATION OPTIMIZATION STRATEGY	17
EU 373/2017 REGULATION	
CLAUSIER NOTE DGA-16	19

MIL-STD 498	20
IEC 61508: FUNCTIONAL SAFETY OF CONTROL SYSTEMS	21
ISO / IEC 29110	22
DO-178B / ED-12B	23
DO-178C / ED-12C	24
DO-178C / ED-12C	25
DO-178C / ED-12C AND DO-254 / ED-80	26
DO-200B / ED-76A	27
DO-248B / ED-94B	28
DO-248C / ED-94C	29
DO-278 ED-109 – ASSURANCE INTÉGRITÉ LOGICIEL	30
DO-278A ED-109A - SOFTWARE INTEGRITY ASSURANCE	31
DO-278A ED-109A – ASSURANCE INTÉGRITÉ LOGICIEL	32
DO-297 ED-124	33
ED-153 – SOFTWARE SAFETY ASSURANCE	34
DO-330 / ED-215	35
DO-331 / ED-218	36
DO-332 / ED-217	37
DO-333 / ED-216	38
ECSS-Q-ST-30	39
HSIA & FMEA SW	39
ECSS-Q-ST-80C	40
ECSS-E-ST-40C	41
SIA - SOFTWARE INTEGRITY ASSURANCE FOR SME	42
SOFTWARE PLANS DEVELOPMENT	43
AGILE METHOD	44
SEU AND MBU ROBUST SOFTWARE DEVELOPMENT	45
OPTIMIZATION, VALIDATION AND VERIFICATION SOFTWARE STRATEGY	46
SDRA	 47

RD ³	48
9 SOFTWARE STRUCTURAL COVERS	49
DATA DOUPLING ANALYSIS (DC) AND CONTROL COUPLINGS (CC)	50
NON-REGRESSION IMPACT ANALYSIS PROCESS	51
DYNAMIC SOFTWARE INTEGRITY CONTROL	52
COTS INTEGRATION IN SOFTWARE DEVELOPMENT	53
REUSE OF IN-SERVICE EXPERIENCE	54
IEC 61508: FUNCTIONAL SAFETY OF CONTROL SYSTEMS	55
DO-254 ED-80	 56

IEC 61508

Functional safety of control systems

The standard IEC 61508 defines requirements to ensure that systems are designed, implemented, operated and maintained to provide an accurate level of integrity and safety (SIL).

This standard can be applied to all levels of the supply chain through a common terminology.

Time: 1 day

Price on demand

OLID-FF24-0004

AUDIENCE-

This training is intended for anyone involved in critical systems and / or software development projects applying IEC 61508 standard.

It is mainly aimed at department managers, project managers and engineers involved in the development of critical systems, software and hardware according to standard IEC 61508.

Knowledge of Safety is a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Understand the requirements of IEC 61508
- Be able to apply the requirements of IEC 61508 within a system project development to satisfy this standard

PROGRAM -

Introduction to IEC 61508 standard

History of the standard Vocabulary, principles and issues.

Link between the seven components of this standard

Standard organization

Structure General principles

SIL determination

Application areas

System Software Hardware

Overview of standards associated with IEC 61508

Industrial processes: IEC 61511 Nuclear domain: IEC 61513 Automotive domain: ISO 26262 Aeronautical domain: DO-178

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

ECSS-M-ST-80C: 2008

Risk management

This training presents concepts related to risk management in general and the more specific requirements for space projects from the ECSS-M-ST-80C standard.

Time: 1 day

Price on demand

OLID-FF24-0005

AUDIENCE-

This training is intended for anyone involved in critical systems and / or software projects development applying ECSS standards or equivalent.

It is mainly aimed at project managers, batch managers and product assurance engineers who want to have a better understanding of the content of the ECSS-M-ST-80C standard.

A first experience in project management would be a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Understand ECSS-M-ST-80C standard
- Understand processes, management and integration of requirements
- Implement risk management

PROGRAM -

Introduction

Terminology and definitions Concept and process Responsibilities

Process

Description of process and tasks

Implementation

Identification of requirements Process requirements Implementation requirements

Documentation

Registers Forms

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

AGILE METHOD (SCRUM)

Economic alternative methods

Agile methods are, since their democratization, strongly used in the world of software development. These methods, including SCRUM, aim to be more pragmatic and reactive than traditional methods such as the V-cycle. In this context, the aim of this training is to provide both a detailed view of the advantages and constraints of using SCRUM.

Time: 1 day

Price on demand

OLID-FF24-0006

AUDIENCE -

This training is intended for any person or team involved in critical software, hardware and system projects development applying or wishing to prepare the integration of SCRUM method. It is mainly aimed at project managers and batch managers but also concerns team members. Knowledge of basic conventional and / or Agile lifecycle project management techniques is required.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Introduction to the iterative cycles of Agile methods and particularly the SCRUM method
- Presentation of the benefits applying SCRUM method to a project
- Analysis of the side effects generated by SCRUM method and the means to protect against them

PROGRAM -

Basis

The context of Agile-Scrum management
Roles, artifacts and ceremonies
Lifecycle and incremental approach
Differences between traditional and Agile approaches

Issues

Integration
Non-regression
Anomalies and impact
analysis management
Design
Verifications (Duality of
cases and procedures)
Traceability
Quality expectations
Technical debt
Status documents
Team consistency
COTS

Case study

SCALP project: applicability of the Agile methodology on a concrete case

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

SAFETY ANALYSES

ARP4754A ED-79 and ARP4761 ED-135

The ARP4754A ED-79 and ARP4761 ED-135 standards deal with the development methods of on-board systems for aeronautical applications. Since a civil aircraft can only fly if it has obtained a certificate of airworthiness from the authorities, compliance with ARP standards is a requirement.

This training will also introduce differences between aeronautical, space and Air Traffic Management safety.

Time: 2 days

Price on demand

OLID-FF24-0007

AUDIENCE-

This training is intended for project managers, quality engineers, systems development engineers, safety engineers involved in design and obtention of certification applicable to avionics software or electronic avionics equipment.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Acquire contextual knowledge of aircraft certification
- Understand the roles and responsibilities of those involved in the certification process
- Position risk management when designing a system
- Acquisition of RAMS analysis methodology

PROGRAM —

Certification

Responsibilities Regulations Certification

ARP 4754A ED-79 presentation

General Introduction Essential principles reminder Insertion of safety analysis into the system development cycle System level process assurance

ARP4761 ED-135 presentation

RAMS Analyses:

FHA (Functional Hazard Assessment), PSSA (Preliminary System Safety Assessment), SSA (System Safety Assessment), FTA (Fault Tree Analysis), DD (Dependence Diagram), MA (Markov Analysis), FMEA (Failure Mode and

Effects Analysis),
FMES (Failure Mode and
Effects Summary),
CCA (Common Cause
Analysis),

ZSA (Zonal Safety Analysis), **PRA** (Particular Risks Analysis), **CMA** (Common Mode Analysis)

Definition of development levels (fDAL, iDAL) Impact of DAL and safety requirements on architectures

Presentation of differences between aeronautics and space RAMS

General introduction of differences HA Presentation (ECSS-Q-ST-40-02C) FMEA-FMECA Presentation (ECSS-Q-ST-30-02C) FTA Presentation (ECSS-Q-ST-40-12C)

Presentation of differences between aeronautics & CNS/ATM RAMS

General Introduction of differences EU 373/2017 Presentation

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

OLID-FF24-0008

ARP4754A ED-79, ARP4761 ED-135, DO-178C-ED-12C, DO-254 ED-80

The development constraints associated with obtaining certification of avionics software and avionics electronic equipment are diverse. Thus, the DO-178C standard sets the safety conditions for critical avionics software and the DO-254 is its counterpart to follow the evolution of electronic equipment at the component level.

Time: 4 days

Price on demand

AUDIENCE-

This training is intended for anyone involved in the certification of avionics software or electronic equipment, namely: project managers, safety engineers, embedded systems design engineers, system development engineer, software or hardware, quality engineers, maintenance and support engineers.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Present the context of certification of critical on-board systems in aeronautics
- Present the standards ARP 4761 (SAE-1996) ARP 4754A (SAE-2010), DO-178C ED-12C and DO-254 ED-80

PROGRAM —

Introduction

Roles and responsibilities of actors
Type Certification (TC) process
MMEL approach
Link with airworthiness
monitoring (DOA, STC)

Context of the certification

Development process

Requirements
Validation of requirements
Verification of the
implementation
Configuration Management
Process assurance

Management of COTS

Integration of components Architectural devices

Risk Management Process

System safety analysis activities and link with hardware development Detailed presentation of analysis
Tools and methods
Link with system analysis and hardware development

Equipment level requirements analysis

Definition and allocations of fDAL and iDAL (function / item Development Assurance Level) Description of the impacts on the architectural choices and the development process SEU analysis, common modes, IEHA

Additional rules and standards AMC 20-125A CM-SWC

AMC 20-125A, CM-SWCEH-001

Relationship with the authorities

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

Safety (RAMS)

AHA, PASA, FHA, PSSA (FMEA, FTA, DD, MA, CCA (PRA, CMA, ZSA), FMES, SSA, ASA)

It should be considered that the safety is supported by a set of preliminary analyzes prior to development, but also by a set of activities to be carried out. The consistency of these approaches leads to being able to demonstrate the reliability of the software.

Time: 3 days

Price on demand

OLID-FF24-0009

AUDIENCE-

This training is intended for anyone involved in the study of software reliability or on-board hardware, namely: project managers, engineers or safety technicians, quality engineers or more generally any engineer from a design office.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ————

- Acquire the methods and tools used for conducting safety analysis (RAMS)
- Integrate safety requirements into a program or project development
- Determine preventive and protective measures

PROGRAM -

Introduction

Definitions and objectives Risk levels assessment Levels' classification: SIL, PL, ASIL Concept of independence Safety requirements RAMS concepts: Reliability, Availability, Maintainability, Safety

The different standards

ARP, IEC 61508, IEC 61511, IEC 61513, IEC 62061, ISO 26262, ISO 13849 ...
Applicability for electronic control systems
Restriction of use ...

Safety methods

Risk analysis FMEA Fault trees

Analyses

Functional analysis
Allocation of objectives
Reliability diagram and
associated calculations
Failure analysis (FMEA)
Fault tree and associated
calculations
Criticality & gravity matrices
Concepts of dangerous faults
Concepts of coverage rate
Corrective action plans
Presentation and
interpretation of results

Management of COTS

Integration of components
Architectural devices

Case study

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

safety of control systems

System part

IEC 61508 defines requirements to ensure that systems are designed, implemented, operated and maintained to provide a precise level of integrity and safety (SIL).

Part 1 of this standard specifies the requirements for the "System" part

Time: 1 day

Price on demand

OLID-FF24-0010

AUDIENCE-

This training is intended for anyone involved in critical systems development projects to comply with the IEC 61508 standard.

It is mainly aimed at department managers, project managers and engineers involved in the development of critical systems according to IEC 61508 standard.

Knowledge in functional safety is a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Understand the requirements of IEC 61508 standard for the development of critical systems.
- Be able to apply the requirements of IEC 61508 within a system development project applying this standard.

PROGRAM -

Introduction to IEC 61508 standard

History of the standard Vocabulary, principles and issues.

Link between the seven components of the standard.

Standard organization

Structure General principles

SIL determination

Detailed study of the standard concerning the System part

Specification of system design requirements System safety validation planning Systems design and development Systems integration Systems operation and maintenance procedures Systems changes Systems verification

Presentation of the standards associated with IEC 61508

Industrial processes: IEC 61511 Nuclear domain: IEC 61513 Automotive domain: ISO 26262 Aeronautical domain: DO-178

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

ECSS-Q-ST-30 and 40

HA, FMEA, FMECA, FTA, HSIA

OLID-FF24-0011

By pushing us to anticipate failures and breakdowns in our system, safety analysis allows us to increase and justify the confidence we place in the system we are developing.

Time: 1 day

Price on demand

AUDIENCE-

This training is intended for anyone involved in critical systems and / or software development projects applying ECSS standards or equivalent

It is mainly aimed at safety engineers, quality assurance engineers and project managers who want to have a better understanding of the content of the ECSS-Q-ST-30 and ECSS-Q-ST-40 standards.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Develop the quality approach to be implemented at project management and product assurance level
- Understand the ECSS standards relating to safety used in the space domain

PROGRAM —

Introduction to ECSS standards

Presentation of the existing standards

Integration of risk analysis into the development cycle

Benefits of a risk analysis approach

Roles of safety analysis

Presentation of ECSS-Q-ST-30 and ECSS-Q-ST-40 standards

ECSS Q-ST-30-02: FMECA ECSS Q-ST-40-02: Hazard

Analysis

ECSS Q-ST-40-03: Safety Risk

Assessment

ECSS Q-ST-40-10: Common Cause/Common Mode

Analysis

Introduction to Software Safety

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

System Plans development

The purpose of system level planning process is to define the means of producing a system that will meet the requirements and provide the level of confidence in line with the project 's expectations.

This training objective is to present the fundamentals but also to deepen to optimize and avoid the pitfalls of writing system plans.

Time: 1 days

Price on demand

OLID-FF24-0012

AUDIENCE-

This training is intended for anyone involved in critical system development or not, wishing to achieve a level of projects assurance for certification or to improve the reliability of its processes. It is mainly aimed at project managers and batch managers but also concerns team members.

A good knowledge of ARP 4754A / ED-79A standard is a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Know the major subjects to anticipate and detail in the system project plans
- Reduce documentation efforts without sacrificing the provision of information
- Understand the optimization of writing plans from one project to another

PROGRAM -

Fundamentals

System plans and ARP 4754A / ED-79A standard. Major technical subjects to be covered in the plans Granularity of the information included in the plans Main types of plans:

Development plan

Safety Program

Verification plan

Process Assurance

Plan

Configuration

Management Plan

Structure of each plan

Optimization

Reduce documentation efforts while maintaining the same level of information Planning the subcontracting Incremental method for writing system plans from one project to another

EDUCATIONAL RESOURCES

MONITORING AND EVALUATION

OLID-FF24-0013

System validation and verification optimization strategy

The aim of this training is to exceed the objectives of ARP-4754A and DO-178C / ED-12C by proposing new validation and verification paradigms, and thus allowing the best possible reconciliation of certification and industrial constraints.

Several alternative solutions will be exposed.

Time: 2 days

Price on demand

AUDIENCE-

This training is intended for anyone involved in the development of highly integrated or complex on-board systems. It is mainly aimed at project managers, software or system quality assurance managers, certification managers for on-board systems.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Present the validation and verification strategy applying to on-board systems
- Present classic issues inherent in a classic V&V approach
- Identify cases where a V&V approach of ARP-4754A type could lead to counterproductive side effects
- Explain how to organize a certification argument in the context of a deviation

PROGRAM -

Strategy

System verification
Classic issues of the RBT
approach of the DO-178C
Benefits of HLR / LLR merge
for verification efforts
Distinction between SVCP
and (VC; VP)
Identification of effective
validation strategies.

Validation

Tool qualification
Definition of the different
nominal ranges
Supervision processing
SEU / MBU and means of
detection and correction
Problem of real numbers,
object-oriented languages
Checking deactivated code,
additional code, PDS and
COTS

Verification

Non-regression
Root cause analysis of failed processes
Static verification of a MVDS (Multiple Version Dissimilar Software)
Checking FLS (Field Loadable Software)
Calculation of WCET Levels of rigor from IEC 61508-3
Context of AI / ML / DL
Content of a SVP

EDUCATIONAL RESOURCES

Case study and applied exercises

MONITORING AND EVALUATION

EU 373/2017 Regulation

New European approaches for carrying out safety analysis

Regulation EU 373/2017 proposes a new approach for carrying out and facilitating safety analysis by taking into account existing systems already in operation. The scope of applicability of this regulation is: DSAC, ATM / ANS, ATS, MET, AIS, DAT, CNS, ATFM, ASM, ASD, NM and PERS.

Time: 1 day

Price on demand

OLID-FF24-0014

AUDIENCE

This training is intended for anyone involved in carrying out safety analysis at a European ANSP (DSNA/DTI for France).

Knowledge of 482/2008 and 1035/2011 standards is a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Present the methodology followed by the French ANSP (Air Navigation Service Provider)
- Present the issues currently encountered
- Introduce the fundamental changes for the application of EU 373/2017 regulation

PROGRAM -

Safety analysis

Issues Methodology applied by DSNA/DTI

Current regulation context

EU 482/2008, 1034/2011 and 1035/2011 Problems encountered Shortcuts followed by other ANSP Need for a new regulation

EU 373/2017 regulation

Distinction between ATS and non-ATS services
Distinction between "safety assessment" and "safety support assessment"
Risk acceptability
Acceptable level of robustness
Safety criteria

EDUCATIONAL RESOURCES

Case study

MONITORING AND EVALUATION

Clausier Note DGA-16

2017/06/23 Version

Reference of complex software and electronic components engineering requirements to account safety

This so-called "DGA-16" or "Clausier" technical note is a reference for the development of software and hardware in a critical aeronautical environment.

It is produced by the DGA-TA to ease related developments.

TECHNICAL NOTE N° 16-DGATA-P1301261003001-1P-C

Time: 1 day

Price on demand

OLID-FF24-0015

AUDIENCE-

This training is intended for people in charge of projects carried out on behalf of the DGA (Direction Générale de l'Armement) (Aeronautical techniques). It concerns project managers, software and hardware managers and also quality managers who will have to demonstrate its correct application.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Contextualization of "Clausier" in the existing regulatory environment
- Overview of software and hardware requirements
- Strengths and weaknesses identification and alternative approaches proposal to avoid DGA-16 weaknesses.

PROGRAM -

Situation

Contextualization of "Clausier" in the existing regulatory environment

Principles

Criticality levels for SW and HW
System / subsystem
allocation process

Milestones

Presentation of milestones Identification of associated documents Presentation of contributors

Levels 1, 2 and 3

Software requirements Hardware requirements

Strengths and weaknesses

"Clausier" strengths and weaknesses identification on software aspects
Same for hardware aspects
Presentation of alternative approaches to overcome the identified weaknesses

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

MIL-STD 498

United States Military-Standard-498
Requirements for Software
developments and their
documentation

This standard replaced the DOD-STD-2167A, DOD-STD-7935A, and DOD-STD-1703 standards.

It is the origin of ISO and IEEE standards, and especially IEEE 12207.

It integrates software development into the system context and proposes concrete and pragmatic requirements without distinction of level of criticality. In this sense, this standard is suited to most software developments in non-critical areas, and can be proposed as an acceptable means of compliance to customers.

Time: 1 day

Price on demand

OLID-FF24-0016

AUDIENCE-

This training is intended for people in charge of non-critical software projects development who wish to apply a rational, simple and effective approach. Due to its notoriety, this standard can easily be proposed in commercial specifications as a means of compliance to guarantee quality development.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Contextualization of MIL-STD-498 in the existing regulatory environment
- Presentation of its philosophy and requirements
- Strengths and weaknesses identification and alternative approaches proposal to avoid MIL-STD-498 weaknesses

PROGRAM —

Situation

MIL-STD-498
contextualization in the
existing regulatory
environment
Presentation of suitability for
non-critical software
developments

Principles

Software issues anticipation from system level Interactions consideration between hardware and software

Generic requirements

Development of reusable software components

Process assurance

Management of safety and security aspects SW/HW interactions

Detailed requirements

Planning, requirements, design, verification, configuration management, quality assurance
Preparation for use, for software transition, product assessment, corrective actions management, internal reviews, risk management, indicators, suppliers, interfaces
Process improvement

Strengths and weaknesses

MIL-STD 498 strengths and weaknesses identification on software aspects
Presentation of alternative approaches to overcome the identified weaknesses

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

IEC 61508: Functional Safety of Control systems

Software part

The standard IEC 61508 defines requirements to ensure that systems are designed, implemented, operated and maintained to provide an accurate level of integrity and safety (SIL).

Part 1 of this standard specifies the requirements for the "Software" part.

Time: 2 days

Price on demand

OLID-FF24-0017

AUDIENCE-

This training is intended for anyone involved in critical systems and / or software development projects applying the IEC 61508 standard. It is mainly aimed at department managers, project managers and engineers involved in the development of critical software according to standard IEC 61508. Knowledge in Safety is a plus.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Understand the requirements of IEC 61508
- Be able to apply the requirements of IEC 61508 within a software project development to satisfy this standard.

PROGRAM ——

Introduction to IEC 61508 standard

History of the standard Vocabulary, principles and issues Link between the seven components of this standard

Standard organization

Structure General principles

SIL determination

Detailed study of the standard for the software part

Specification of software design requirements
Software Safety validation Planning
Software design and development
Systems integration
Software operating and maintenance procedures
Software modification
Software verification

Overview of standards associated with IEC 61508

Industrial processes: IEC 61511 Nuclear domain: IEC 61513 Automotive domain: ISO 26262 Aeronautical domain: DO-178

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

ISO / IEC 29110

Systems and software engineering for very small organizations (SME)

The ISO / EID 29110 standard was designed to meet the needs of small structures (project or company) with up to 25 people. System-oriented, the standard offers a set of best practices strongly anchored in the reality of the economic fabric of small organizations.

The purpose of this training is to present the standard for its application.

Time: 1 day

Price on demand

OLID-FF24-0018

AUDIENCE-

This training is intended for any person or team (less than 25 members) involved in non-critical system development projects and wishing to improve the reliability of its processes. It is aimed for project managers and batch managers.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Introduce system level requirement writing as part of this standard
- Present the managerial methods introduced in this standard
- Introduce quality management and best practices for system development

PROGRAM —

The fundamentals

Standard challenges

Courses associates with each level of VSE (Very Small Entities)

Document structure

Software Development

Processes

Activities

Produced documents

Assignment of roles

Systems Development

Processes

Activities

Produced documents

Assignment of roles

Deployment Kits

Purpose, advantages and disadvantages of each kit

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-178B / ED-12B

Software considerations in airborne systems and equipment certification

DO-178B / ED-12B governs the development and testing of software embedded in commercial airplanes and aircraft.

It provides recommendations on engineering aspects of critical embedded software, taking a process-oriented approach

Time: 5 days

Price on demand

OLID-FF24-0019

AUDIENCE-

This training is intended for anyone involved in the development of embedded software, namely: software managers, project managers, method and quality managers, software architects, software verifiers and software coders. It can also be useful for project owners who wish to understand this standard.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Understand the approach to apply for qualification and certification of embedded software on civil aircraft
- Understand the recommendations applying to software for embedded systems
- Have a clear and succinct vision of DO-248B / ED-94B standard
- Be able to apply these standards to critical developments in on-board aeronautics.

PROGRAM ——

Regulatory context:

and design effort

Introduction to DO-178B / ED-12B

History of standards and other applicable standards (CRI, IP, CM, etc.)
Role and resources of the Authorities
Introduction to Safety approach:
Interaction between failures, breakdowns and vulnerabilities / system of systems, systems / hardware / software
Links between software safety and acceptable risks
Correlation between criticality

Overview of planning, development, verification, quality and configuration management processes

Objectives, activities, expected results, known hard points and existing workarounds

Deepening the management of COTS components

Planning, acquisition and Configuration Management Demonstration of integrity interfaces

Overview of DO-248B / ED-94B

Additional explanations about DO-178B / ED-12B objectives

Differences between DO-178B and DO-178C

Clarification of developments

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-178C / ED-12C

Software considerations in airborne systems and equipment certification

DO-178C / ED-12C governs the development and testing of software embedded in airplanes and commercial aircraft.

It provides recommendations on engineering aspects of critical embedded software, taking a process-oriented approach

Time: 4 days

Price on demand

OLID-FF24-0020

AUDIENCE-

This training is intended for anyone involved in the development of embedded software, namely: software managers, project managers, method and quality managers, software architects, software verifiers and software coders. It can also be useful for project owners who wish to understand this standard.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Understand the approach to apply for qualification and certification of embedded software on civil aircraft
- Understand the recommendations applying to software for on-board systems
- Understand the approach to apply for each standard supplement (DO-330 / ED-215, DO-331 / ED-218, DO-332 / ED-217, DO-333 / ED-216) and DO-248C / ED-94C
- Be able to apply these standards to critical developments in on-board aeronautics

PROGRAM -

Introduction DO-178C / ED-12C Differences between DO-178B / DO-332 / ED-217 – Object Regulatory context Introduction to safety approach

Overview of planning, development, verification, quality and configuration management processes

Objectives, activities, expected results, known hard points and existing workarounds

Deepening the management of **COTS** components

Planning, acquisition and **Configuration Management** Demonstration of integrity interfaces

Overview of DO-248C / ED-94C Additional explanations about DO-178C / ED-12C objectives

DO-178C

Clarification of developments

DO-330 / ED-215 – Qualification configuration management of software tools

Planning, development, verification, quality and configuration management process, points to look

DO-331 / ED-218 -

Development and verification in process, points to look aeronautics based on formalized models

Planning, development, verification, quality and configuration management process, points to look

Oriented Techniques

Planning, development, verification, quality and process, points to look

DO-333 / ED-216 - Formal Methods

Planning, development, verification, quality and configuration management

EDUCATIONAL RESOURCES

MONITORING AND EVALUATION

DO-178C / ED-12C

Software considerations in airborne systems and equipment certification

DO-178C / ED-12C governs the development and testing of software embedded in commercial airplanes and aircraft.

It provides recommendations on engineering aspects of critical embedded software, taking a process-oriented approach.

Time: 5 days

Price on demand

OLID-FF24-0021

AUDIENCE-

This training is intended for anyone involved in the development of embedded software, namely: software managers, project managers, method and quality managers, software architects, software verifiers and software coders. It can also be useful for project owners who wish to understand this standard.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES

- Understand the approach to apply for qualification and certification of embedded software on civil aircraft
- Understand the recommendations applying to software for on-board systems
- Have a clear and succinct vision of standard supplements (DO-330 / ED-215, DO-331 / ED-218, DO-332 / ED-217, DO-333 / ED-216) and DO-248C / ED-94C
- Be able to apply these standards to critical developments in on-board aeronautics.

PROGRAM —

Airworthiness certification context

Safety from system level
Introduction of system of systems,
systems / hardware / software
Interaction between failures, errors
and vulnerabilities
Safety concept – (4 exercises)
Certification regulatory
EASA certification concept

Requirements Based Tested with DO-178C / ED-12C

Historic from DO-178C

Design Assurance Level

Introduction to MOC

Definition

Relation with aeronautical guidelines Considering DAL for software

DO-178C overview

Guideline structure
Tables clarification

Development process

RBT and V life cycle

Development effort tailoring

depending DAL

CSCI - CSC - CSU

Relationship between CSC / CSU / DC / CC / Structural Coverage and DAL System High-Level Requirements and System derived Requirements

System architecture

System Low-Level Requirements

Software High-Level Requirements and dHLR

Several Robustness areas

Software High-Level Architecture /

Data and Control Coupling

Software Low-Level Architecture /

Data and Control Coupling

Software definition

Adaptation Data Item

Software Low-Level Requirements and

dLLR

Source code development

Validation and Verification

Validation principle

Independence

Verification principle

Verification Cases

Verification Procedures

Verification Results

DC/CC verification

Alternative solutions

Exhaustive inputs testing

Multiple Version Dissimilar Software

Verification

HLR-LLR merging

Analysis at SW level for verification at

system level

Output/Input comparison

Safety analysis in support for

alternative strategy

Software reliability models

Design and source code

validation/verification

COTS versus PDS

Tools Qualification
Product Service History

Margins (WCET, Memory)

SEU/MBU

Field Loadable Software

Partitioning

DAL degradation from system level

Source code validation / OOT

Integration

Verification of Verification

Structural coverage

Output analysis

MC/DC optimization

Supporting Processes

Configuration Management

Quality Assurance

Planning Process

Plans

Transition criteria

Software life cycle

Additional Considerations

Plans compliance and coordination

Certification liaison process

Deviation request

Regulator audits

Early certification meeting

SOI #1, DO-248C / ED-94C, SOI #2, SOI

#3, SOI #4

DO-178C / ED-12C and DO-254 / ED-80

Overlay areas for VHDL (FPGA) coding

The separation of DO-178C and DO-254 standards presents an overlay zone when the hardware implementation of VHDL code in programmable components brings a level of complexity such that it becomes difficult to demonstrate full verification coverage by the strict application of DO-254.

The question about the DO-178C complementary application for these parts is often required by certification authorities.

Time: 3 days

Price on demand

OLID-FF24-0022

AUDIENCE-

This training is intended for anyone involved in the development of hardware and / or software for highly integrated or complex on-board systems. It is for project managers, software and hardware managers, method engineers, certification managers for embedded systems and quality assurance managers. General knowledge of hardware and/or software engineering or software and/or hardware quality assurance would be a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Present DO-178C and DO-254 standards
- Present the specific impacts of VHDL coding on safety aspects
- Present the overall strategy of EASA certification authorities
- Present the V&V strategy applying to software and hardware for on-board systems
- Organize a certification argument in the context of a specific standard deviation.

PROGRAM -

Context

System and software as verification object Interdependence between error / failure and vulnerability Verification based on Safety Assurance Level

Strategies

RBT approach of the DO-178C HLR / LLR merge benefits SVCP vs (VC; VP) distinction Architecture boxes according to DAL.

Validation

Tool qualification according to DO-330 / ED-215
Definition of the different nominal ranges
Supervision processing
SEU / MBU and means of detection and correction

Problem of real numbers, object-oriented languages. Checking deactivated code, additional code, PDS and COTS

Verification

Automated verification and coverage illusion
Verification of the pseudocode
Verification of ADIs
Checking the outputs of an UMS

Non-regression

Root cause analysis of failed processes

Static verification of a MVDS (Multiple Version Dissimilar Software)

Checking FLS (Field Loadable Software)

Calculation of WCET

Levels of rigor from IEC 61508-3

Context of AI / ML / DL Content of an SVP

EDUCATIONAL RESOURCES

Case analysis

MONITORING AND EVALUATION

DO-200B / ED-76A

Standards for processing aeronautical data

The DO-200B / ED-76A provides minimum guidance for the processing of aeronautical data used for navigation, flight planning, terrain detection, cockpit displays or flight simulators.

The training objective is to ensure that the process of aeronautical data transformation for on-board or ground-based applications does not degrade data integrity.

Time: 1 day

Price on demand

OLID-FF24-0023

AUDIENCE-

This training is intended for anyone involved in critical software projects development or not, wishing to achieve an assurance level with a view to certification or to improve the reliability of its processes. It is mainly aimed at project managers and batch managers.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Introduce the specific concepts to the aeronautical data processing
- Present the process of aeronautical data transformation for on-board or ground-based applications
- Present the process for demonstrating compliance of aeronautical data to the authority

PROGRAM —

The fundamentals

Aeronautical Data Chain
Data Process Assurance Level (DPAL)
General aeronautical data processing mode
Quality requirements

Implementation

Presentation of the DO-200B process Compliance plan Quality data processing procedures Verification and validation activities Qualification of tools

Demonstration of compliance

Audits and their specific features Alternative demonstration methods

Differences between DO-200A & DO-200B

Notable changes between the two versions

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-248B / ED-94B

Complement à l'ED-12B et l'ED-109

The DO-248C/ED-94C is a complement to the DO-178B/ED-12B and to the DO-278/ED-109 which addresses the questions of both industry and authorities on these guidelines. The document contains Frequently Asked Questions (FAQ), discussion Papers (DPs) and rationale for sections that could be problematic.

This training is in line with DO-248B / ED-94B by offering an analysis of the questions and answers provided throughout the document.

Time: 1 day

Price on demand

OLID-FF24-0024

AUDIENCE-

This training is intended for anyone involved in the development of systems and / or software for highly integrated or complex onboard systems. It is aimed, in particular, at project managers, software managers, method engineers, certification managers for on-board systems and CNS / ATM as well as quality assurance managers.

Preliminary knowledge or experience of the DO-178B / ED-12B and DO-278 / ED-109 standards is strongly recommended for this training.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Introduction to the DO-248B / ED-94S supplement
- Provide a better understanding of the objectives of DO-178B / ED-12B and DO-278 / ED-109
- Understand the challenges of certification and the functioning of the authorities and entities in charge of the process

PROGRAM-

Fundamentals

Reminders on standards
Origin of clarification
document
Overview of the
complement structure

FAQ

System level issues
The parallels and
commonalities of the DO178B / ED-12B and the DO278 / ED-109
Main issues specific to a
standard

Discussion Paper

Context
Main clarifications on DO178B / ED-12B
Main clarifications on DO278 / ED-109

Justifications

Concerned chapters Clarifications in terms of Process

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-248C / ED-94C

Complement to ED-12C and ED-109A

DO-248C / ED-94C is a complement to the DO-178C / ED-12C and to the DO-278A / ED-109A which addresses the questions of both industry and authorities on these guidelines. The document contains Frequently Asked Questions (FAQ), Discussion Papers (DP) and rationale for the sections that could raise a problem.

This training is in line with the aim of DO-248C / ED-94C by offering an analysis of the questions and answers delivered throughout the document.

Time: 1 day

Price on demand

OLID-FF24-0025

AUDIENCE-

This training is intended for anyone involved in the development of systems and / or software for highly integrated or complex onboard systems. It is mainly aimed at project managers, software managers, method engineers, certification managers for onboard systems CNS / ATM as well as quality assurance managers.

Preliminary knowledge or experience of DO-178C / ED-12C and DO-278A / ED-109A standards is strongly recommended for this training.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Introduction to DO-248C / ED-94C supplement
- Provide a better understanding of DO-178C / ED-12C and DO-278A / ED-109A objectives
- Understand the challenges of certification and the functioning of the authorities and entities in charge of the process

PROGRAM-

Fundamentals

Reminders on standards Origin of clarification document Overview of the complement structure

FAQ

System level issues
The parallels and
commonalities of DO-178C /
ED-12C and DO-278A / ED109A
Main issues specific to a
standard

Discussion Paper

Context
Main clarifications on DO178C / ED-12C
Main clarifications on DO278A / ED-109A

Justifications

Concerned chapters Clarifications in terms of Process

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

evaluation test as a quiz with feedback from the trainer is carried out at the end of the session. A live assessment is given to each participant.

DO-278 ED-109 -

Assurance intégrité logiciel

Software Integrity Assurance
Considerations for Communication,
Navigation, Surveillance and Air Traffic
Management Systems

DO-278 / ED-109 governs the development and testing of software embedded in Communication, Navigation, Surveillance (CNS) and Air Traffic Management (ATM) critical systems.

It provides recommendations on engineering aspects of critical embedded software, taking a process-oriented approach

Time: 2 days

Price on demand

OLID-FF24-0026

AUDIENCE-

This training is intended for anyone involved in the development of embedded software, namely: software managers, project managers, method and quality managers, software architects, software verifiers and software coders. It can also be useful for project owners who wish to understand this standard.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Understand the approach to apply for qualification and approval of CNS / ATM software
- Understand the recommendations applying to software for embedded systems
- Have a clear and succinct vision of DO-248B / ED-94B
- Highlight the differences with the ED-153
- Be able to apply these standards to critical developments in ATM / CNS systems.

PROGRAM-

Introduction to DO-178B / ED-12B

Regulatory context: History of standards and other applicable standards (PHARE, DISCC etc ...), Role and resources of the **Authorities** Introduction to Safety: Interaction between failures, breakdowns and vulnerabilities / system of systems, systems / hardware / software Links between software safety and acceptable risks Correlation between criticality and design effort

Overview of planning, development, verification, quality and configuration management processes Objectives, activities, expected results, known hard points and existing workarounds

Deepening the management of COTS components

Planning, acquisition and Configuration Management Demonstration of integrity interfaces

Overview of DO-248B / ED-94B

Additional explanations about DO-278 / ED-109 objectives

Differences from ED-153Highlighting points of divergence

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-278A ED-109A -

Software integrity

assurance

Considerations for Communication, Navigation, Surveillance and Air Traffic Management Systems

DO-278A / ED-109A governs the development and testing of software embedded in Communication, Navigation and Surveillance (CNS) and Air Traffic Management (ATM) critical systems.

It provides recommendations on engineering aspects of critical embedded software, taking a process-oriented approach.

Time: 2 days

Price on demand

OLID-FF24-0027

AUDIENCE-

This training is intended for anyone involved in the development of embedded software, such as: software managers, project managers, method and quality managers, software architects, software verifiers and software coders. It can also be useful for project owners who wish to understand the standard.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Understand the approach to apply for qualification and approval of CNS / ATM software
- Understand the recommendations applying to software for embedded systems
- Have a clear and succinct vision of standard supplements (DO-330 / ED-215, DO-331 / ED-218, DO-332 / ED-217, DO-333 / ED-216) and DO-248C / ED-94C
- Highlight the differences with the ED-153
- Be able to apply these standards to critical developments in ATM / CNS systems.

PROGRAM -

DO-178C / ED-12C Introduction

Regulatory context: Standards histories and other applicable standards (PHARE, DISCC, etc.), Role and resources of **Authorities** Introduction to Safety: Interaction between failures, breakdowns and vulnerabilities / system of systems, systems / hardware / software Links between software safety and acceptable risks Correlation between criticality

Overview of planning, development, verification, quality and configuration management processes

and design effort.

Objectives, activities, expected results, known hard points and existing workarounds

Deepening the management of COTS components

Planning, acquisition and **Configuration Management** Demonstration of integrity interfaces

Overview of DO-248C / ED-94C

Additional explanations about DO-278A / ED-109A objectives

Differences from ED-153 Highlighting points of divergence

Introduction to supplements

DO-330 / ED-215 - software tools Qualification DO-331 / ED-218-Development and verification in aeronautics based on formalized models DO-332 / ED-217 – Object **Oriented Techniques** DO-333 / ED-216 - Formal Methods

EDUCATIONAL RESOURCES

MONITORING AND EVALUATION

OLID-FF24-0028

DO-278A ED-109A – Software integrity assurance

Considerations for Communication, Navigation, Surveillance and Air Traffic Management Systems

DO-278A / ED-109A governs the development and testing of software embedded in Communication, Navigation, Surveillance (CNS) and Air Traffic Management (ATM) critical systems.

It provides recommendations on engineering aspects of critical embedded software, taking a process-oriented approach.

Time: 5 days

Price on demand

AUDIENCE-

This training is intended for anyone involved in the development of embedded software, namely: software managers, project managers, method and quality managers, software architects, software verifiers and software coders. It can also be useful for project owners who wish to understand this standard.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Understand the approach to apply for qualification and approval of CNS / ATM software
- Understand the recommendations applying to software for embedded systems
- Understand the approach to apply for each standard supplement (DO-330 / ED-215, DO-331 / ED-218, DO-332 / ED-217, DO-333 / ED-216) and DO-248C / ED-94C
- Highlight the differences with the ED-153
- Be able to apply these standards to critical developments in the ATM / CNS systems.

PROGRAM —

Introduction DO-278A / ED-109A

Regulatory context Introduction to Safety

Overview of planning, development, verification, quality and configuration management processes

Objectives, activities, expected results, known hard points and existing workarounds

Deepening of the management of COTS components

Planning, acquisition and Configuration Management Demonstration of integrity interfaces

Overview of DO-248C / ED-94C

Additional explanations about DO-278A / ED-109A objectives

Differences from ED-153

Highlighting points of divergence

DO-330 / ED-215 – Qualification of software tools

Planning, development, verification, quality and configuration management process, points to look

DO-331 / ED-218-

Development and verification in aeronautics based on formalized models

Planning, development, verification, quality and configuration management process, points to look

DO-332 / ED-217 – Object Oriented Techniques

Planning, development, verification, quality and configuration management process, points to look

DO-333 / ED-216 - Formal Methods

Planning, development, verification, quality and configuration management process, points to look

EDUCATIONAL RESOURCES

Case analysis

MONITORING AND EVALUATION

DO-297 ED-124

Integrated Modular Avionics (IMA)

The IMA consists in reducing the software functions to the level of identical modular computers. The Integrated Modular Avionics (IMA) integrates the power of computers to handle several functions in order to reduce consumption and costs related to on-board computing and facilitate its maintenance.

Time: 1 day

Price on demand

OLID-FF24-0029

AUDIENCE-

This training is intended for people involved in the approval and continuing airworthiness circuit of IMA systems working on civil certification projects as well as any person, engineer or project manager, involved in the certification process, or in the systems integration and to developers, integrators, certification applicants.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ————

- Understand the development and certification phases of architectural systems
- Study safety and security of components
- Understand the quality assurance process related to the design of IMA systems

PROGRAM ———

IMA in certification process

Planning
System Development
Safety analysis
IMA integration and Original Equipment Manufacturers (OEM)
Responsibility of suppliers
Partitioning and Health Monitoring
V&V

Link with other standards ARP4764A DO-178C and DO-254 ETSO-2C153 ARINC 653

EDUCATIONAL RESOURCES

Case analysis

MONITORING AND EVALUATION

ED-153 – Software Safety Assurance

Guidelines for ANS Software Safety
Assurance

EUROCAE ED-153 standard is used in software integrity verification in an ATM (air traffic management) and CNS (Communication, Navigation and Surveillance) context.

Time: 3 days

Price on demand

OLID-FF24-0030

AUDIENCE-

This training is intended for software quality engineers, software project managers, software architects, software developers, software testers involved in integrity assurance procedures.

General knowledge of software engineering and software quality assurance is required for this training.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Present the complementarity between ED-109A and ED-153
- Present the link to IEC / ISO 61508
- Know the approach for implementing the safety assurance of ATM / CNS software
- Present the limitations defined by the DSNA/DTI (MET-001)

PROGRAM -

Introduction

History
Definition of software safety
Presentations of primary,
support, organizational and
additional life cycles
Environment definition
(PHARE, DISCC, IR-ATM)

Software Safety Assurance

Safety demonstration (ADF and FMEA)
SWAL (Software Assurance Level) objectives and measures

Process overview

Objectives, activities, expected results, known hard points and existing workarounds Issues related to COTS Relationship with Authorities Introducing the annexes: ESARR 6 traceability

Differences between ED-153 and ED-109A

Advantages and differences of the ED-153

EDUCATIONAL RESOURCES

Case study

MONITORING AND EVALUATION

The trainings are carried out in person. An evaluation with feedback from the trainer will be carried out at the end of the session. A live assessment is given to each participant.

DO-330 / ED-215

Software tools qualification

DO-330 / ED-215 Software tool qualification considerations is a supplement to DO-178C / ED-12C and DO-278A / ED-109A. Software tools are widely used in multiple aeras, to help develop, verify, or control other software.

The aim of this training is to provide an overall understanding of the DO-330 / ED-215 expectations and to articulate alternative methods that reconcile certification and industrial reality.

Time: 2 days

Price on demand

OLID-FF24-0031

AUDIENCE-

This training is intended for anyone involved in the development of on-board software such as: software managers, project managers, method and quality managers, software architects, software testers and software coders. It can also be useful for project supervisors who want to understand this standard.

A good knowledge of DO-178C / ED-12C and/or DO-278A / ED-109A is required.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Understand the approach to qualify software tools
- We have a clear and succinct vision of other supplements (DO-331 / ED-218, DO-332 / ED-217, DO-333 / ED-216)
- Be able to apply this standard to critical developments in on-board aeronautics and CNS/ATM aeras.

PROGRAM -

DO-330 / ED-215 Introduction

Standards history
Tool definition
Qualification objectives
Characteristics and
qualification levels of tools

Overview of planning, development, verification, quality and configuration management processes Objectives, activities, expected results, known hard points and existing workarounds

Presentation of additional considerations and alternative methods

Multifunctional tools COTS and the use of inservice experience Reuse of qualified tools Impact of the environment on qualified tools

Introduction to supplements

DO-331 / ED-218 development and verification in aeronautics formalized models DO-332 / ED-217 - Object Oriented Technology DO-333 / ED-216 - Formal Methods

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-331 / ED-218

Development and verification in aeronautics based on formalized models

DO-331 / ED-218, Model-Based Development and Verification considerations is a supplement to DO-178C / ED-12C and DO-278A / ED-109A. It is a guideline leading the use of formalized models in on-board and ground software.

The use of MBD in software development offers many advantages but also many pitfalls. This training purpose is to provide an overview of the best practices and methods for the DO-331 application.

Time: 2 days

Price on demand

OLID-FF24-0032

AUDIENCE-

This training is intended for anyone involved in the development of on-board software such as: software managers, project managers, method and quality managers, software architects, software testers and software coders. It can also be useful for project supervisors who want to understand this standard.

A good knowledge of DO-178C / ED-12C and/or DO-278A / ED-109A is required to use formalized models.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Understand the development and verification approach based on formalized models
- Have a clear and succinct view of other supplements (DO-330 / ED-215, DO-332 / ED-217, DO-333 / ED-216)
- Be able to apply this standard to critical developments in onboard aeronautics and CNS/ATM aeras.

PROGRAM —

DO-331 / ED-218 introduction

Standard history,
Presentation of specification and
design models
Presentation of formal
specifications

Presentation of impacts on development from models

Modification of life cycle, requirements validation and verification

Overview of planning, development, verification, quality and configuration management processes

Objectives, activities, expected results, known hard points and existing workarounds

Introduction to supplements

DO-330 / ED-215–Software Tools Qualifications DO-332 / ED-217–Object Oriented Technology DO-333 / ED-216–Formal Methods

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback

MONITORING AND EVALUATION

DO-332 / ED-217

Object-Oriented Technology

DO-332 / ED-217 Object-Oriented Technology (OOT) is a supplement to DO-178C/ED-12C et DO-278A/ED-109A. It gives the main orientation of objects-oriented technology in critical software as well as an introduction to OOT.

The aim of this training is to provide an overview of best practices and methods for DO-332 application.

Time: 2 days

Price on demand

OLID-FF24-0033

AUDIENCE-

This training is intended for anyone involved in critical or non-critical software development or wishing to achieve a level of assurance for certification or to improve reliability of its processes. It is mainly aimed at project managers and batch managers, but also at team members.

A good knowledge of DO-178C / ED-12C and/or DO-278A / ED-109A is required to orientate themselves in the use of Object-Oriented Technology.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Understand the approach to use object-oriented technology
- Have a clear and succinct vision of other supplements (DO-330 / ED-215, DO-331 / ED-218, DO-333 / ED-216)
- Be able to apply this standard to critical developments in onboard aeronautics and CNS/ATM areas

PROGRAM —

DO-332 / ED-217 Introduction

Standards history Presentation of object development and its safety issues

Overview of planning, development, verification, quality and configuration management processes Objectives, activities, expected results, known hard points and existing workarounds

Introduction to supplement

DO-330 / ED-215— Software Tools Qualifications DO-331 / ED-218— Development and verification in aeronautics based on formalized models DO-333 / ED-216—Formal Methods

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-333 / ED-216

Formal methods verification

DO-333 / ED-216 Formal Methods is a supplement to DO-178 / ED-12C and DO-278 / ED-109A. It deals with Formal Methods which to date no avionics certification project has been recognized for its use of the formal evidence. However, there are formal technologies that would facilitate the development of avionics software.

The purpose of this training is to provide an overview of this uncommon but advantageous method as described by DO-333.

Time: 2 days

Price on demand

OLID-FF24-0034

AUDIENCE-

This training is intended for anyone involved in critical or noncritical software projects development or wishing to achieve a level of assurance for certification or to improve reliability of its processes. It is mainly aimed at project managers and batch managers, but also at team members.

A good knowledge of DO-178C / ED-12C and/or DO-278 / ED-109A standards is required to orientate themselves in the use of formal methods.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Understand the approach to use of formal methods
- Have a clear and succinct vision of other supplements (DO-330 / ED-215, DO-331 / ED-218, DO-332 / ED-217)
- Be able to apply this standard to critical developments in onboard aeronautics and CNS/ATM areas

PROGRAM —

Introduction to DO-333 / ED-216

Standards history Presentation of formal Verification and interaction with DO-331 / ED-218 Strengths and weaknesses of each type of formal analysis

Overview of planning, development, verification, quality and configuration management processes Objectives, activities, expected results, known hard points and existing workarounds

Introduction to supplement

DO-330 / ED-215—Software
Tools Qualifications
DO-331 / ED-218—
Development and verification
in aeronautics based on
formalized models
DO-332 / ED-217—Object
Oriented Technology

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

ECSS-Q-ST-30 HSIA & FMEA SW

OLID-FF24-0035

Software robustness to hardware failures and software design defects

Anticipating the failures of our software and ensuring that the software is properly specified to react towards hardware failures is an important step in safety process.

Time: 1 day

Price on demand

AUDIENCE-

This training is intended for anyone involved in critical systems and/or software projects development applying ECSS or equivalent standards.

It is mainly aimed at safety engineers, quality assurance engineers and project managers who want to have a better understanding of ECSS-Q-ST-30 standards content and mainly the links between FMEA and HSIA.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Develop the quality approach to be implemented at project management and product assurance level
- Understand the main ECSS standards applied in space domain

PROGRAM ----

Introduction to ECSS Standards

Presentation of all existing standards

Integration of risk analyses into the development cycle

Advantages of a risk analysis approach

Roles of safety analysis

Overview of FMEA and HSIA processes

FMEA processes: Software failures effects analysis HSIA: interactions between software and hardware

Safety and robustness

The FMEA as justification for the choice of design and architecture

Complementary operational safety analyses

FHA CMA CCA

Contingency Analysis

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

ECSS-Q-ST-80C

Software Product Assurance

This training presents quality assurance requirements for design, development, and the operational use of software in Space Systems.

Time: 2 days

Price on demand

OLID-FF24-0036

AUDIENCE-

This training is intended for anyone involved in critical systems and/or software projects development applying ECSS or equivalent standards.

It is mainly aimed at quality assurance engineers and project managers who need to have a clear vision of software certification impact on their project or system and a better understanding of the ECSS-Q-ST-80C standard.

A first experience in quality, quality assurance, process assurance or product assurance would be a plus.

PREREQUISITES ——

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Develop the quality approach to be implemented at project management and product insurance level
- Understand the main ECSS quality standards applied in space domain

PROGRAM —

Introduction to ECSS standards

Presentation of all different standards

Integration of quality assurance into the development cycle

Principles of Quality
Assurance
Advantage of a software
quality assurance approach

ECSS-Q-ST-80C standards presentation

Standard organization
Implementation of software
quality assurance
Expected documentation

Introduction to software safety

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

ECSS-E-ST-40C

Space Software Engineering

The development of an on or off-board software in space domain requires a rigor and a sufficient level of quality to ensure the people and/or product safety. The ECSS-E-ST-40C discusses the engineering processes that need to be put in place in order to achieve these goals.

Time: 2 days

Price on demand

OLID-FF24-0037

AUDIENCE-

This training is intended for anyone involved in critical systems and/or software projects development applying ECSS or equivalent standards. It is mainly aimed at project managers, system engineers and product insurance engineers who want to have a better understanding of the ECSS-E-ST-40C standard content. A first experience in system/software or space development would be a plus.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Understand ECSS-E-ST-40C standard
- Understand processes, management and requirements integration
- Implement software project management

PROGRAM -

Introduction

Terminology and definitions Concept and process Responsibilities

Software engineering process

Link to Systems Engineering, Product assurance, Production and Operations Link with other ECSS (ECSS-E-ST-10, ECSS-E-ST-70, ECSS-M-ST-10, ECSS-Q-ST-80, ...).

Requirements

Identifying requirements for each process:

- Software system requirements
- Software management
- Engineering of architecture and software requirements
- Software design and production
- Software Validation
- Software delivery and acceptance

- Software verification
- Software exploitation
- Software maintenance

Documentation

Expected documents presentation

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback

MONITORING AND EVALUATION

SIA - Software Integrity Assurance for SME

Progressivity in Software Integrity Assurance for Small Organizations

Entirely designed by **OLGHAM**, the SIA or Software Integrity Assurance is an alternative method to achieve assurance levels by partitioning and gradually introducing activities required by DO-178C, ED-109A or ED-153 standards

The SIA offers a gradual solution and fully anchored in the industrial context for project with difficulties to reach the objectives of applicable standard.

Time: 1 day

Price on demand

OLID-FF24-0038

AUDIENCE:

This training is intended for anyone involved in critical or noncritical software projects development wishing to achieve a level of assurance for certification or to improve its process's reliability. It is particularly aimed to project managers and batch managers, but also concerns team members

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Introduce the whole Software Integrity Assurance
- Adapt the guideline in the project context and objectives

PROGRAM -

Software Integrity Assurance concepts

Objectives
Document's structure
Effort levels
Rigor levels
Partitioning out goals
Definition of a roadmap
Determining a starting point
Related management
strategies
Achieving the goal
The pros and cons of using
SIA

Preliminary analysis

Situation
Adaptation to the project's geometry
Creating in situ examples
Determining a starting point
Related management
strategies
Achieving the goal
The pros and cons of using
SIA

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

Software plans Development

Producing software plans is the basis of a software development and verification strategy. They are addressed by DO-178C and DO-278C standards and are a prerequisite for certification.

The aim of this training is to present the fundamentals but also to optimize and avoid the potential pitfalls of writing software plans.

Time: 1 days

Price on demand

OLID-FF24-0039

AUDIENCE-

This training is intended for anyone involved in critical or noncritical software projects development wishing to achieve a level of assurance for certification or to improve the its process's reliability. It is particularly aimed at project managers and batch managers, but also concerns team members.

A good knowledge of DO-178C / ED-12C and/or DO278A / ED-109A standards is desirable.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ————

- Know the major topics to anticipate and detail in software project plans
- Reducing documentation efforts without sacrificing information
- Understand the plans writing optimization from one project to another

PROGRAM -

Fundamental

DO-178C / DO-278A
Software Plans and standards
Major technical topics to be addressed in the plans
Granularity of information to be placed in plans
The main types of plans:

- Development plan
- Audit plan
- Quality Assurance Plan
- Configuration
 Management Plan

Other types of plans Plan structure

Software obsolescence

Planning and obsolescence anticipation The material necessary to manage obsolescence

Optimization

Documentation reduction efforts while maintaining the same level of information Subcontracting planification Incremental method for writing plans from one project to another

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

AGILE METHOD

Software development according to AGILE method

Since their democratization, Agile methods have been heavily used in the world of software development. These methods target to be more pragmatic and reactive than traditional methods such as the V-cycle. In this context, the objectives of this training are to provide a detailed view of the circumstances that justify these alternative methods use with the aim to reduce the project effort and costs.

Time: 1 day

Price on demand

OLID-FF24-0040

AUDIENCE-

This training is aimed at any person or team involved in critical software, hardware and system projects development applying or wishing to prepare for the integration of agile methods. It is particularly aimed at project managers and batch managers, but concerns also team members.

Knowledge of basic project management techniques in conventional and/or Agile lifecycles is required.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Synthetically introduce the specifics of "LEAN," "AGILE," "SCRUM," "XP", ... methods.
- Analyses optimization and reduction of development efforts through alternative methods
- Analysis optimization and reduction of verification efforts through alternative methods

PROGRAM —

Fundamental

The most efficient timeline for verification and development processes
The impact of life cycle choice on development
"Active multi-dissimilar" method for drastically reducing audit targets and development costs

Verification and alternative methods

Reducing verification efforts in tense environments Optimizing existing verification processes by equivalent alternative methods

Development and alternative methods

Alternative methods without writing requirements
Optimizing existing development processes by equivalent alternative methods

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

SEU and MBU Robust software development

Single Event Upsets & Multiple Bit
______ Upsets

The interaction of cosmic particles with our atmosphere creates a neutron flow. These charges can be deposited on a microelectronics device and disrupt them. This phenomenon is called a SEU or software error when it involves 1 bit. Beyond 1 bit, this phenomenon is called an MBU.

Time: 1 day

Price on demand

OLID-FF24-0041

AUDIENCE-

This training is intended for engineers and technicians concerned with safety or electronic design, equipment and structure. It is intended for any equipment manufacturer or system that produces electronic equipment or components

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Understanding the phenomenon of cosmic radiation and its impacts
- Know the normative environment and analysis levels to protect your equipment/system from such interactions

PROGRAM ——

Environments presentation

Naturally radiative environment Space and terrestrial environment Interaction between radiative particles and matter Effects on electronic components

Triggering a singular event

Factors of influence

- Latitude
- Longitude
- Earth natural protection

The different analyses

Safety Assessment Process Particular Risk Analysis (PRA) Qualitative -quantitative analysis

Prevention solutions

Single event effects test
Designing a system
Protective barrier

EDUCATIONAL RESOURCES

Case analysis

MONITORING AND EVALUATION

OLID-FF24-0042

and verification software strategy

Optimization, validation

The aim of this training is to exceed the objectives of ARP-4754A and DO-178C / ED-12C by proposing new validation and verification paradigms, and thus to reconcile certification constraints and industrial constraints at best. Several alternative solutions will be on display.

Time: 2 days

Price on demand

AUDIENCE-

This training is intended for anyone involved in the development of systems and/or software for high-integration or complex onboard systems. It is particularly for project managers, software managers, method engineers, on-board systems certification managers and quality assurance managers.

General knowledge of DO-178 systems and software engineering or system/software quality assurance would be a plus.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Introduce the system validation and verification strategy for on-board system software
- Presenting the inherent classic issues in a classic V&V approach
- Identify cases where an ARP-4754A and DO-178 V&V type approach could lead to counterproductive side effects
- Explain how to organize a certification argument in a deviation context

PROGRAM -

Strategy

Checking at the system level based on the software level Classic problems of DO-178C RBT approach Benefits of HLR/LLR merge for verification efforts Distinction between SVCP and (VC; VP) Identification of effective

Validation

validation strategies.

Tool Qualification according to DO-330 Definition of the different nominal ranges Supervision treatment SEU / MBU and means of detection and correction Problem of real numbers, objectsoriented languages

Check deactivated code, additional code, PDS and COTS

Verification

Non-regression

Root cause analysis of failed processes

Static verification of a MVDS (Multiple Dissimilar Software version)

FLS Check (Field Loadable Software)

Calculation of WCET

Levels of rigor from IEC 61508-3

Context of AI /ML / DL Content of an SVP

EDUCATIONAL RESOURCES

MONITORING AND EVALUATION

SDRA

Static detection of Residual Anomalies

The methodology aims to highlight software anomalies that have not been successfully detected by the existing verification.

It is based on several lines convergence of analysis that are chosen according to the software product observed weaknesses.

Time: 2 days

Price on demand

OLID-FF24-0043

AUDIENCE-

This training is intended for anyone involved in software development: software managers, quality managers, project managers, quality engineers, software development engineers and test engineers.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ————

- Present the SDRA method (Static Detection of Residual Anomalies
- Identify software anomalies (coding error), verification holes
- Review of development and verification processes

PROGRAM —

Method presentation

Anomalies identification Coding mistakes

Development process

Finding faulty processes Verification Validation

Anomalies classification

Curative and preventive solutions

EDUCATIONAL RESOURCES

Case study

MONITORING AND EVALUATION

evaluation test as a quiz with feedback from the trainer is carried out at the end of the session. A live assessment is given to each participant.

RD^3

Robustness and Defensive Driven Development

RD³ is the contraction of RDDD which is the acronym for Robustness Defensive and Driven Development.

RD³is a reverse software development method from conventional approaches. Indeed, the software architecture and development are developed as a generic structure that implements all the robustness as well as the defensive in the first place. Functional development then fits naturally into this structure with the advantage to be reusable from one project to another.

This results in an extremely robust software at a lower development and verification cost than conventional development.

Time: 1 day

Price on demand

OLID-FF24-0044

AUDIENCE-

This training is intended for anyone in charge of software development: project managers, architects, development managers, audit managers, quality managers.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES -

- Contextualization of errors, failures and interactions HW/SW and SW/SW
- Introducing the RD³ method
- Appropriate reduction in verification efforts
- Strength of these approaches for particular contexts acceptance (COTS, PDS, History in service, etc...)

PROGRAM -

Situation

Contextualization of errors and failures and interactions HW/SW and SW/SW

Weaknesses of conventional verification

Introducing the different verification spaces
Net analogy
Spreading errors
Regression paths
COTS contribution to errors
Contribution of SDPs to errors

Robust and defensive development

Reliability
Availability
Maintainability
Safety- harmlessness
Safety-confidentiality

Introducing the RD³ method

"MicroSat / NanoSat" analogy Distinction between symptoms and errors/failures The different levels of reliability
Communication in a distributed system

Dissimilar redundancies
Built-In Tests (PBIT, CBIT, IBIT)
Memory redundancies
The confidence levels of

Adapting functional branches to depending on the distribution of confidence

importance

functions

Supervisors

Dynamic control of size conservation
Dynamic control of data coupling
Dynamic control of control coupling
Battery monitoring

Dynamic reconfiguration techniques

Introducing the various transparent dynamic reconfiguration techniques

Focus on non-transparent dynamic reconfigurations

Benefits

Optimizing verification
COTS acceptance
Partial reuse of previously
developed software
acceptance
Software without life cycle data
(no specification, very few
verification) acceptance
In service history file
acceptance
Decoupling preparation in case
of modifications

EDUCATIONAL RESOURCES

Animation around a presentation.
Treatment of examples and feedback.

MONITORING AND EVALUATION

9 software structural covers

Highlighting the power of these software development analysis

Structural coverage of instructions
Structural coverage of decisions
Structural coverage of conditions in decisions
(MC/DC)

Structural coverage of assembled branches
Structural coverage of data coupling
Structural coverage of the coupling of controls
Structural coverage of software components
(CSU, CSC)

Structural coverage of the worst case of execution Structural coverage of robustness

Time: 1 day

Price on demand

OLID-FF24-0045

AUDIENCE-

This training is intended for people in charge of the development of critical software (project managers, audit managers, quality managers).

PREREQUISITES ———

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Know the 9 structural software covers
- Find out all the benefits from each analysis in the demonstration of verification completeness (verification of the verification)
- Discover the additional demonstrative considerations of these analyses in traditional industrial contexts (COTS, PDS/Legacy, in Service history, etc.)
- Find out how to easily perform these analyses without specific tools

PROGRAM —

Situation

Contextualization of structural coverage analyses in critical contexts

Introducing adequacy for noncritical software developments General Principles of Structural Coverage

Detailed description and presentation of how to make them without tools

Structural coverage of instructions
Structural coverage of decisions
Structural coverage of conditions
in decisions (MC/DC)
Structural coverage of assembled
branches
Structural coverage of data
coupling
Structural coverage of control
coupling Structural flow of

software components (CSU, CSC)

Structural coverage of the worst case of execution
Structural coverage of robustness

Identification of contributions

Stop-checking criteria
Adjustment principle RBT
Identifying weaknesses in
verification
Detection of unexpected features
Additional code detection
Validating deactivation
mechanisms
Identification of the defensive
code

Traps to avoid

Non-credit verification
Non-credit for logical error
detection
Non-credit of completeness of all
requirements
Non-credit of completeness of
implementation of each
requirement

Use of the dilution principle

COTS acceptance
Partial reuse of previously
developed software acceptance
Software without life cycle data
(no specification, very few
verification) acceptance
In service history file acceptance

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback

MONITORING AND EVALUATION

Data Coupling Analysis (DC) and Control Couplings (CC)

The efficient software architecture through the streams of data and controls

Designing software around Data and Control Couplings can effectively build barriers against the spread of errors, and ensures the software health of in real time.

This training helps to demystify all the problems related to couplings, and thus helps to guide software developments from the point of view of functional reliability and availability.

Time: 1 day

Price on demand

OLID-FF24-0046

AUDIENCE-

This training is intended for people in charge of software development: project managers, audit managers, quality managers.

PREREQUISITES ——

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Contextualization of Data and Control Coupling (DC/CC) in the existing regulatory environment (including aeronautical certification)
- Introducing all subtypes of couplings
- Strength of these approaches for the particular contexts (COTS, PDS, in service History, etc...) acceptance

PROGRAM —

Situation

Contextualization of Data and Control Matching (DC/CC) in the existing regulatory environment

Power of these analyses to demonstrate reliability and availability: required in critical contexts for certification

Software design

Building a software architecture by couplings Identifying integrity barriers that protect against the spread of errors

Operating safety lock in reliability and availability Functional cybersecurity protection

Data coupling

Data dictionary internal interfaces coupling external interfaces coupling structures (stamp) coupling Content coupling

Weaknesses

Object-oriented techniques

Control coupling

State and sequence diagrams
State coupling
Synchronous /asynchronous
coupling
Interruption coupling

Structural coverage

DC/CC Coverage Demonstration

Measuring cohesion

Functional cohesion
Sequential cohesion
Communication cohesion
Procedural cohesion
Temporal cohesion
Logical cohesion
Coincidence cohesion

Benefits

Coupling benefits
Verification optimization
COTS acceptance
Partial reuse of previously
developed software
acceptance

Software without life cycle data (no specification, very few verification) acceptance In service history file acceptance Decoupling preparation in case of modifications

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

Non-regression impact analysis process

Most of the software errors found during test campaigns occur as a result of a change. The primary objective of this training is to present means to protect against regression during a change through further analysis.

Time: 1 day

Price on demand

OLID-FF24-0047

AUDIENCE-

This training is intended for anyone involved in software or system projects development, critical or not, and wishing to achieve a level of assurance for certification or to improve its process's reliability. It is particularly for project managers and batch managers but is highly recommended to the complete teams.

Knowledge of the fundamentals for project management in conventional lifecycle and/or Agile is a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ————

- Define best practices for implementing change during development
- Present the challenges of amending a PDS (Previously Developed Software)

PROGRAM —

Fundamental

The Challenges of Impact Analysis The Issues of Non-Regression Analysis The analyses complementarity

Impact analysis

Traceability management
Analysis by expertise
Identifying life cycle data
Impact of change on
verification
Delineation of verification
cases to be replayed
The case of PDS

Non-regression analysis

Traceability management
Verification
Data and Control Coupling
Real-time analysis
Margins analysis
HMI analysis
Structural analysis

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

Dynamic software integrity control

Dynamic detection of software anomalies and hardware failures and automatic reconfiguration

Designing complex software also means admitting that not all contexts could be completely verified as the combination can be gigantic. An alternative approach is to consider that anomalies can occur, as well as hardware failures, then to design the architecture and development strategy around this principle in order to avoid malfunctions and denials of service.

The integration of COTS or previously developed software components without the assurance of a full verification can also be considered favorable contexts for this approach.

Time: 1 day

Price on demand

OLID-FF24-0048

AUDIENCE-

This training is intended for people in charge of software development: project managers, architects, development managers, quality managers.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES -

- Contextualization of errors, failures and interactions HW/SW and SW/SW
- Introducing functional safety techniques
- Appropriate reduction in verification efforts
- Strength of these approaches for the particular contexts (COTS, PDS, History in service, etc...) acceptance

PROGRAM -

Situation

Contextualization of errors, failures and HW/SW + SW/SW interactions Introducing the different verification spaces Reduced static testing efforts when dynamic anomaly detections are implemented

Dynamic detection techniques

Introducing the different dynamic detection techniques Identifying integrity barriers that protect against the spread of errors Operating safety lock in reliability and availability

Simultaneous detection techniques Coupling approach for multiple anomalies and multiple Capital gains from couplings failures

Impact of RAMS analysis at the architectural level Adjusting programming techniques

Control coupling

State and sequence diagrams State coupling Synchronous /asynchronous coupling Interruption coupling

Structural coverage

Functional cybersecurity protection DC/CC Coverage Demonstration

Introducing data couplings Introducing control couplings Structural coverage of couplings

Benefits

Optimizing verification **COTS** acceptance Partial reuse of previously developed software acceptance Software without life cycle data (no specification, very few verification) acceptance In service history file acceptance Decoupling preparation in case of modifications

Dynamic reconfiguration techniques

Distinction between symptoms and errors or breakdowns Introducing the various transparent dynamic reconfiguration techniques Focus on non-transparent dynamic reconfigurations Differences between detection of anomalies and detection of failures

EDUCATIONAL RESOURCES

MONITORING AND EVALUATION

COTS integration in software development

OLID-FF24-0049

The COTS exploitation has been widely adopted in software projects development for CNS/ATM systems. Many categories of COTS can be cited, including: operating systems, real-time cores, or execution libraries and data management systems.

The primary objective of this training is to provide the keys to understand the issues and alternative methods related to COTS integration in software development.

Time: 1 day

Price on demand

AUDIENCE-

This training for anyone involved in the development of systems and/or software using COTS or wishing to integrate it.

It is particularly for project managers, software managers, method engineers, on-board systems certification managers and quality assurance managers. An in-depth knowledge of software engineering such as DO-178 or ED-109 would be a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Introduction to COTS integration in software development under DO-278A / ED-109A
- Introduce alternative methods developed to reduce COTS integration efforts

PROGRAM ----

Fundamentals

COTS in a context of DO-178C / ED-12C development COTS in DO-278A / ED-109A development context Acquisition of COTS and configuration management Functional software requirements met by COTS Protection of undesired functions and Derived Requirements

Alternative Methods

COTS classification by level of complexity: CAL method (COTS Assurance Level) COTS analysis by cylinder method Formal method Design COTS COTS operating system In-service COTS experience as a certification help

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

evaluation test as a quiz with feedback from the trainer is carried out at the end of the session. A live assessment is given to each participant.

Reuse of in-service experience

If the safety equivalent of an in- development software can be demonstrated by the use of the in-service experience, some of the credit for certification can be removed. The purpose of this training is to present a complete view of the expectations in order to use the in-service experience as support for certification.

Time: 1 day

Price on demand

OLID-FF24-0050

AUDIENCE-

This training is intended for anyone involved in critical or noncritical software projects development wishing to achieve a level of assurance for certification. It is particularly for project managers and batch managers, but can also concerns team members.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES —

- Presenting the in-service experience for DO-278A / ED-109A and DO-178C / ED-12C
- Define this method acceptance in a certification context
- Understand development relief through the use of in-service experience

PROGRAM -

Fundamentals

The in-service experience Cases of use

In-service experience acceptance

Management configuration
Efficiency of error report
Software stability
Software maturity
Operational environment
compatibility
Choosing the in-service
period experience to
consider
Rate and severity of errors
during the in-service period
Impact of changes

Reducing development efforts

In-service experience and verification

The COTS case

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

IEC 61508: Functional Safety of control systems

Hardware Part

IEC 61508 standard defines requirements to ensure that integrated systems and software are designed, implemented, operated and maintained to provide a precise level of integrity and safety (SIL).

Time: 1 day

Price on demand

OLID-FF24-0051

AUDIENCE-

This training is intended for anyone involved in critical systems and/or software projects development to comply with IEC 61508.

It is particularly for service managers, project managers and engineers involved in the development of critical systems, software and hardware according to IEC 61508.

Knowledge of functional safety is a plus.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Understand the IEC 61508 requirements
- Be able to apply the IEC 61508 requirements within a software project development applying this standard.

PROGRAM -

Introduction to IEC 61508

Standard History Vocabular, principles and issues Link between the standard other components: (parts 1 to 7)

Standard's organization

Structure General Principles

Determination of the SIL

Detailed study of the hardware part standard

Lifecycle and management requirements
Hardware Safety Integrity
Calculating the probability of failures
Failure detection tools (FMECA, Failure Trees...)

Introduction to IEC 61508 standards

Industrial processes: IEC 61511 The nuclear domain: IEC 61 513 The automotive domain: ISO

26262

The aeronautic domain: DO-178

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

DO-254 ED-80

On-board electronic design assurance equipment

DO-254 / ED-80 Standard is designed to meet avionics certification requirements for the electronic development Sets (equipment, maps, programmable components)

Time: 2 days

Price on demand

OLID-FF24-0052

AUDIENCE-

This training is intended for anyone involved in electronic development such as: hardware managers, quality managers, project managers, quality engineers, electronic development engineers, test engineers and system or hardware engineers.

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ———

- Introduce DO-254 / ED-80 standard for on-board electronics design assurance
- Understand certification safety for complex electronic equipment issues
- Be able to apply these standards to critical developments in on-board aeronautics

PROGRAM -

On-board electronics certification

Principles of quality assurance Systems Functional Safety Accident risks and causes, Link with hardware development

Processes key point

Planning
Requirements table
Development
Verification - Validation
Configuration management
Process assurance
Relationship with
authorities
Tools and reusable
components

Link to other standards and reference documents

AMC 20-152A, CM-SWCEH-001

COTS Component Management

COTS planning, acquisition and configuration management Demonstration of integrity interfaces

EDUCATIONAL RESOURCES

Case study

MONITORING AND EVALUATION

evaluation test as a quiz with feedback from the trainer is carried out at the end of the session. A live assessment is given to each participant.

ARTIFICIAL INTELLIGENCE DEVELOPMENT PROCESS

CERNA REPORT	58
AI: CODANN	59

CERNA Report

Robotics research ethics

The Allistene Digital Science and Technology Research Ethics Committee (French CERNA) stated that research establishments or institutions set up ethics committees in digital sciences and technologies for projects likely to have a direct impact on society.

Time: 1 day

Price on demand

OLID-FF24-0053

AUDIENCE-

This training is intended for anyone involved in a research process: researchers, university staff, PhD students, scientists of any structure: school, institute, private company, competitiveness pole, public operator.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Introducing the research context
- Introducing the different technologies and their design
- Introducing integration characteristics into the social scheme
- Introducing the limits of robotics and ethical considerations

PROGRAM —

Context

The Commission
The objectives
Ethics definition in research domain
Legal framework
Technology and social inclusion
Collective responsibility

Typology

Simple integration Complex integration Multi-robots

Autonomous and robotic systems classification

Robot with individuals or groups Robots in the medical domain Robots in defense and security

Architecture and Design

Confidence Limits Behaviour tracking Autonomy and integrity Responsibility

Skills and Interaction

Autonomy and Decision-making Life imitation and social interaction Humans repair by machines

Ethical recommendations

Code of ethics Operational ethics committee Legal monitoring Attack prevention

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

AI: CoDANN

Software design concepts for neural networks (AI)

Certification of critical software

On 31 March 2020, EASA published the first ever report to study the challenges posed by the use of neural networks, derived from Artificial Intelligence, in the aera of aeronautics. This report is the precursor to a future European repository that will be produced in successive stages between 2021 and 2025.

This training helps to understand the problems of design and verification of AI software which, by nature, are non-deterministic, and whose automatic decisions cannot be anticipated, and therefore are unspecified. Thus, the solutions provided indicates the way the software needs to be developed and verified.

Time: 2 days

Price on demand

OLID-FF24-0054

AUDIENCE-

This training is intended for people in charge of the development of artificial intelligence-based software using neural network techniques (project managers, architects, development managers, audit managers, quality managers).

PREREQUISITES —

No prerequisite

PEDAGOGICAL OBJECTIVES ——

- Introducing the EASA regulatory certification schedule for AI/NR (Artificial Intelligence/Neural Network) software until 2035
- Course in AI/NR programming
- Introducing AI/NR issues
- Presentation of EASA's solutions

PROGRAM ——

Situation

Contextualization of critical software certification in aviation Introducing the EASA regulatory certification schedule for AI/NR (Artificial Intelligence/Neural Network) software until 2035, with autonomous piloting application in 2035 Introducing existing standards and their applications to AI (ML/DL: Machine Learning / Deep Learning)

AI/NR issues

Non-determinism and safety Lack of functional specification and RBT principle Memory allowances

How to program in Al

Principles of neural networks (AI/NR)
The architecture of AI/NR

Learning AI/NR
Application of AI/NR to shape recognition (convolution approach)

Learning (ML/DL)

Learning process
Learning assurance
Advanced concepts for learning
assurance
Performance evaluation
Safety evaluation

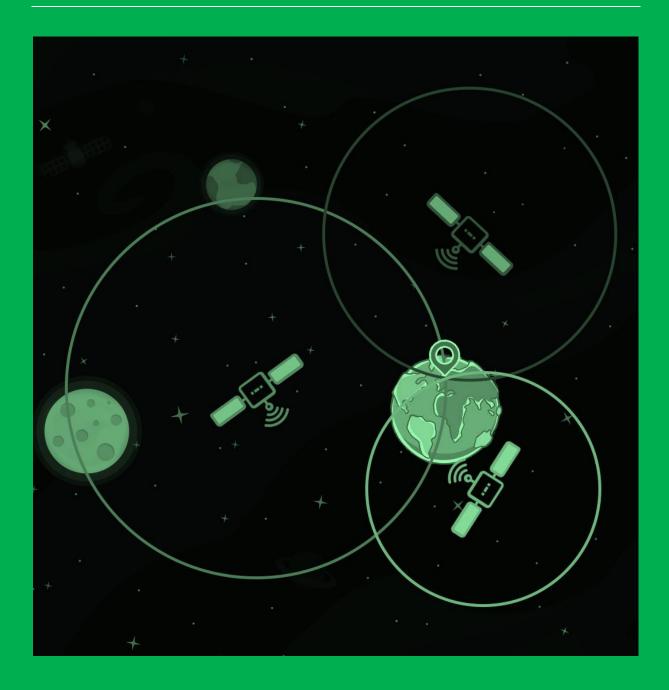
Adapted principles for certification

The W life cycle to consolidate Al learning (ML/DL)
The limits of generalization
The application of the FMEA to the AI/NR

Use cases and operational concepts

Application to learning assurance in a context of form recognition

Benefits


Application to all domains (critical or non-critical)
Al's strengths and weaknesses in the face of classic developments

EDUCATIONAL RESOURCES

Animation around a presentation. Treatment of examples and feedback.

MONITORING AND EVALUATION

GNSS

INTRODUCTION TO GNSS SYSTEMS, GNSS RECEIVER TECHNOLOGY, AND SBAS AUGMENTATION	
SYSTEMS	61

Introduction to GNSS systems, GNSS receiver technology, and SBAS augmentation systems

The purpose of this training is to provide an overview, concise, but sufficiently view of the characteristics, principles and techniques implemented by geolocation systems by processing signals transmitted by GNSS satellite navigation systems (GPS, GALILEO, etc ...) and SBAS augmentation systems (WAAS, EGNOS, etc

Time: 2 days

Price on demand

OLID-FF24-0055

AUDIENCE AND PREREQUISITES

This training is intended for professionals who need to use GNSS receivers or measurements produced by GNSS receivers in the context of their activities, and who wish to have a more precise vision of the concepts involved in order to be aware of the contributions and limits of GNSS technologies and its SBAS augmentations.

PREREQUISITES -

No prerequisite

PEDAGOGICAL OBJECTIVES -

- Understand and acquire the basics associated with GNSS systems and technologies and SBAS augmentation systems
- Strengthen mastery of GNSS use by understanding the system's key parameters and observables, as well as raising awareness of the vulnerabilities and limitations of GNSS.

PROGRAM -

I - GNSS systems and receiver technology

Presentation and principles of GNSS

Introduction and presentation of major GNSS and augmentation systems Physical principles implemented

GNSS signals

Signal structures and associated properties GNSS signal processing techniques

GNSS receivers

GNSS Receiver Architectures

Key measurements produced by a GNSS receiver

Vulnerabilities and limitations of GNSS receivers

Key performance
parameters of a GNSS
receiver
Main vulnerabilities of a
GNSS receiver
Modes of use and quality of
measurements provided by
a GNSS receiver

II - SBAS augmentation systems - Links with DO-229

Presentation and principles of SBAS

Context and history of SBAS Architecture and principles of SBAS systems Description of major SBAS augmentation systems

Services provided by SBAS

Services provided by SBAS The concept of Integrity The concepts of Availability and Continuity

EDUCATIONAL RESOURCES

Animation around a presentation.

Treatment of examples and feedback.

MONITORING AND EVALUATION

TERMS AND CONDITIONS

1- OBJECT

The purpose of these General Conditions of Sale is to define the general conditions for participating in our training sessions.

Any registration by the Customer is deemed to be an order deemed accepted by the latter from the receipt of the registration confirmation issued by OLGHAM and implies full and complete acceptance of these conditions which prevail over any other document of the Customer, in particular its general purchase conditions.

2- REGISTRATION AND ORDERING TERMS

Any registration for a training session will be done within 4 weeks before the start date of the session. Registration will be in electronic format. We reserve the right to accept later registrations. The number of participants per session is limited to 9, in particular for the videoconference format.

3- REGSITRATION CONFIRMATION

A training agreement governing the terms of execution will be sent no later than 3 weeks before the start of the training to the Training Manager of the signatory company. Final registration will only be taken into account after receipt of the training agreement duly signed by the Customer and the Customer Purchase Order (if applicable).

In the absence of an agreement signed by the Client 4 weeks before the start of the session, we reserve the right to freely dispose of the places selected by the Client after having informed him.

A summons for the participant(s) will be sent at the latest one week before the start of the session and will provide all the practical information relating to the session (times, location of the training, ...) and particularities.

4- CERTIFICATION OF TRAINING

A certificate of achievement mentioning the objectives, nature and duration of the action will be given to the trainee(s) at the end of the training.

5- PRICE, INVOICING AND PAYMENT

Registration fees cover educational services (teaching, practical work, computer tools, documentation provided, necessary supplies) as well as the costs of breaks and lunch. They do not include any transport and accommodation costs.

The prices indicated on the purchase order are in Euro excluding taxes, to be increased by VAT at the rate in force and all other possible taxes and / or duties withheld at source. Any session started is due in full.

The invoice is sent to the Customer at the end of the training.

Payment will be made upon receipt of the invoice by check payable to OLGHAM 56 Route de Galembrun 31480 PELLEPORT or by bank transfer.

Regarding training financed by a person with their own expense, from the date of signature of the training agreement, the Client has 10 days to withdraw. He informs us by registered letter with acknowledgment of receipt (L 6353-5 of the labour code). In this case, no sum can be demanded from the Customer.

Amounts not paid by the due date indicated on the invoice will give rise to the payment by the Customer of late penalties set at three (3) times the legal interest rate. These penalties are payable as of right and until full payment.

6- CANCELLATION AND POSTPONEMENT CONDITIONS

Any case of cancellation by the Customer must be communicated to us in writing.

For any cancellation, even in the event of force majeure, within a period exceeding thirty (30) calendar days before the start of the session, 50% of the cost of the course will be definitively invoiced to the Client, except in the event of replacement by a participant from the same establishment, confirmed by updating the training agreement. For any registration cancelled within a period of between thirty (30) days and fifteen (15) days, 70% of the cost of the course will be definitively billed to the Client. For any registration cancelled less than fourteen (14) calendar days before the start of the session, or not cancelled (in particular absenteeism or abandonment), 100% of the cost of the course will be definitively billed to the Client.

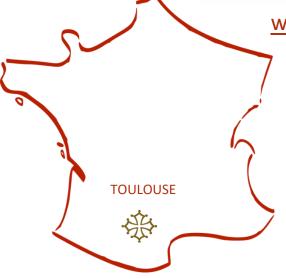
OLGHAM reserves the right to cancel or postpone a session, in particular in the event of an insufficient number of participants in order to ensure good teaching conditions. The Customer is informed at the latest 1 (one) week before the date of the session ordered. A new training date will be offered to the Customer. Payments received will be fully refunded. No compensation will be paid to the Customer due to postponement or cancellation by us.

7- DISPUTES

If a dispute cannot be settled amicably, the Toulouse Court will have sole jurisdiction to rule on the dispute.

8- COMPUTING AND FREEDOMS

Personal information communicated to us for the execution of the session may be communicated to our contractual partners for the purposes of the training. In accordance with the Law N° 78-17 of January 6, 1978 relating to computers, files and freedoms, the Customer may at any time exercise his right of access, opposition and rectification in our file. In accordance with the obligations of the RGPD, the personal data that you communicate to us will only be used within the framework of the commercial relations between you and our education department. The data will not be used for purposes outside the scope of the requested service and in accordance with the general conditions of use of personal data.


Off-site-training

Domain "Le Râtelier" – Hôtel & Restaurant 2075 chemin du Râtelier - Lieu-dit Hounédis 31530 Montaigut sur Save FRANCE

25 minutes from TOULOUSE-BLAGNAC airport, close to Airbus and AEROSCOPIA and 25 km from TOULOUSE. Direction AUCH by the RN 124.

OLGHAM

56 Route de Galembrun Lieu-dit Thuin 31480 PELLEPORT

FRANCE

Phone: +33 (0)6 49 31 30 23

Registration: sandrine.chouziou@olgham.com